首页> 外文OA文献 >Dynamic Flux Balance Modeling of Microbial Co-Cultures for Efficient Batch Fermentation of Glucose and Xylose Mixtures
【2h】

Dynamic Flux Balance Modeling of Microbial Co-Cultures for Efficient Batch Fermentation of Glucose and Xylose Mixtures

机译:用于葡萄糖和木糖混合物的有效分批发酵的微生物共培养物的动态通量平衡模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sequential uptake of pentose and hexose sugars that compose lignocellulosic biomass limits the ability of pure microbial cultures to efficiently produce value-added bioproducts. In this work, we used dynamic flux balance modeling to examine the capability of mixed cultures of substrate-selective microbes to improve the utilization of glucose/xylose mixtures and to convert these mixed substrates into products. Co-culture simulations of Escherichia coli strains ALS1008 and ZSC113, engineered for glucose and xylose only uptake respectively, indicated that improvements in batch substrate consumption observed in previous experimental studies resulted primarily from an increase in ZSC113 xylose uptake relative to wild-type E. coli. The E. coli strain ZSC113 engineered for the elimination of glucose uptake was computationally co-cultured with wild-type Saccharomyces cerevisiae, which can only metabolize glucose, to determine if the co-culture was capable of enhanced ethanol production compared to pure cultures of wild-type E. coli and the S. cerevisiae strain RWB218 engineered for combined glucose and xylose uptake. Under the simplifying assumption that both microbes grow optimally under common environmental conditions, optimization of the strain inoculum and the aerobic to anaerobic switching time produced an almost twofold increase in ethanol productivity over the pure cultures. To examine the effect of reduced strain growth rates at non-optimal pH and temperature values, a break even analysis was performed to determine possible reductions in individual strain substrate uptake rates that resulted in the same predicted ethanol productivity as the best pure culture.
机译:构成木质纤维素生物质的戊糖和己糖的顺序摄取限制了纯微生物培养物有效生产增值生物产品的能力。在这项工作中,我们使用动态通量平衡模型来研究底物选择性微生物混合培养物提高葡萄糖/木糖混合物利用率并将这些混合底物转化为产品的能力。分别针对葡萄糖和木糖摄取而设计的大肠杆菌菌株ALS1008和ZSC113的共培养模拟表明,先前实验研究中观察到的批次底物消耗的改善主要是由于相对于野生型大肠杆菌,ZSC113木糖摄取的增加所致。 。将为消除葡萄糖摄取而设计的大肠杆菌ZSC113与野生型酿酒酵母(仅能代谢葡萄糖)进行计算机共培养,以确定与纯野生菌相比,共培养能否提高乙醇产量型大肠杆菌和酿酒酵母菌株RWB218经过工程设计,可同时吸收葡萄糖和木糖。在两个微生物在共同的环境条件下均能最佳生长的简化假设下,菌株接种物的优化以及有氧至无氧的切换时间使乙醇产量比纯培养物提高了近两倍。为了检查在非最佳pH和温度值下菌株生长速率降低的影响,进行了收支平衡分析,以确定各个菌株底物摄取速率的可能降低,从而导致与最佳纯培养物相同的预测乙醇生产率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号